Classroom Pronunciation Reductions Grammar Conversation Reading Listening Vocabulary Activities Videos
Idioms Slang Acronyms Phonics Portmanteau Words Handwriting Alphabet Surveys Tests
Holidays Movies Everyday Environment Learning News Places Flashcards Study Literacy
World America History Drive Education Teaching Dictionary Resources About Contact
 
 
 
Depiction of Early Jurassic environment preserved at the St. George Dinosaur Discovery Site at Johnson Farm, with Dilophosaurus wetherilli in bird-like resting pose.
Jurassic

The Jurassic (/dʒʊˈræs.sɪk/ juu-RASS-ik) is a geologic period and system that spanned 56 million years from the end of the Triassic Period 201.3 million years ago (Mya) to the beginning of the Cretaceous Period 145 Mya. The Jurassic constitutes the middle period of the Mesozoic Era. The Jurassic is named after the Jura Mountains in the European Alps, where limestone strata from the period were first identified.

The start of the period was marked by the major Triassic–Jurassic extinction event. Two other extinction events occurred during the period: the Pliensbachian-Toarcian extinction in the Early Jurassic, and the end Jurassic transition, which is disputed in its impact.

The Jurassic period is divided into three epochs: Early, Middle, and Late. Similarly, in stratigraphy, the Jurassic is divided into the Lower Jurassic, Middle Jurassic, and Upper Jurassic series of rock formations.

By the beginning of the Jurassic, the supercontinent Pangaea had begun rifting into two landmasses: Laurasia to the north, and Gondwana to the south. This created more coastlines and shifted the continental climate from dry to humid, and many of the arid deserts of the Triassic were replaced by lush rainforests.

On land, the fauna transitioned from the Triassic fauna, dominated by both dinosauromorph and pseudosuchian archosaurs, to one dominated by dinosaurs alone. The first birds also appeared during the Jurassic, having evolved from a branch of theropod dinosaurs. Other major events include the appearance of the earliest lizards, and the evolution of therian mammals. Crocodilians made the transition from a terrestrial to an aquatic mode of life. The oceans were inhabited by marine reptiles such as ichthyosaurs and plesiosaurs, while pterosaurs were the dominant flying vertebrates.

Etymology and history

The chronostratigraphic term "Jurassic" is directly linked to the Jura Mountains, a mountain range mainly following the course of the France–Switzerland border. The name "Jura" is derived from the Celtic root *jor via Gaulish *iuris "wooded mountain", which, borrowed into Latin as a place name, evolved into Juria and finally Jura. During a tour of the region in 1795, Alexander von Humboldt recognized the mainly limestone dominated mountain range of the Jura Mountains as a separate formation that had not been included in the established stratigraphic system defined by Abraham Gottlob Werner, and he named it "Jura-Kalkstein" ('Jura limestone') in 1799.

Thirty years later, in 1829, the French naturalist Alexandre Brongniart published a survey on the different terrains that constitute the crust of the Earth. In this book, Brongniart referred to the terrains of the Jura Mountains as terrains jurassiques, thus coining and publishing the term for the first time. The German geologist Leopold von Buch in 1839 established the three-fold division of the Jurassic, originally named from oldest to youngest, the Black Jurassic, Brown Jurassic and White Jurassic. The term "Lias" had previously been used equivalently for strata of equivalent age to the Black Jurassic in England by Conybeare and Phillips in 1822. French palaeontologist Alcide d'Orbigny in papers between 1842 and 1852 would divide the Jurassic into ten stages “étages” based on ammonite and other fossil assemblages in England and France, of which seven are still used, though none retain the original definition. German geologist and palaeontologist Friedrich August von Quenstedt in 1858 would divide the three series of von Buch in the Swabian Jura into six subdivisions defined by ammonites and other fossils. German palaeontologist Albert Oppel in studies between 1856 and 1858 altered d'Orbigny's original scheme and further subdivided the stages into biostratigraphic zones, based primarily on ammonites. Most of the modern stages of the Jurassic were formalized at the "Colloque du Jurassique á Luxembourg" in 1962.
The epochs and ages of the Jurassic.
Geology

The Jurassic period is divided into three epochs: Early, Middle, and Late. Similarly, in stratigraphy, the Jurassic is divided into the Lower Jurassic, Middle Jurassic, and Upper Jurassic series of rock formations, also known in Europe as Lias, Dogger and Malm. The three epochs are subdivided into shorter spans of time called ages. The ages of the Jurassic from youngest to oldest are shown in the graphic.

Stratigraphy

Jurassic stratigraphy is primarily based around of the use of ammonites as index fossils, with the First Appearance Datum of specific ammonite taxa being used to mark the beginnings of stages, and well as smaller timespans within stages, referred to as "Ammonite Zones", these in turn are also sometimes subdivided further into subzones. Global stratigraphy is based on standard European ammonite zones, with other regions being calibrated to the European successions.

Mineral and hydrocarbon deposits

The Kimmeridge Clay and equivalents are the major source rock for the North Sea oil. The Arabian Intrashelf Basin, deposited from the late Middle to Upper Jurassic, is the setting of the world's largest oil reserves, including the Ghawar Field, the world largest oil field. The Jurassic aged Sargelu and Naokelekan Formations are major source rocks for oil in Iraq. Over 1500 gigatons of Jurassic coal reserves are found in North-West China, primarily in the Turpan-Hami Basin and the Ordos Basin.

Impact craters

Major impact craters include the Morokweng crater, a 70 km diameter crater buried beneath the Kalahari desert in northern South Africa. The impact is dated to the Jurassic-Cretaceous boundary, around 145 Ma. The Morokweng crater has been suggested to have had a role in the turnover at the Jurassic-Cretaceous transition. Another major impact crater is the Puchezh-Katunki crater, 40-80 kilometres in diameter, buried beneath Nizhny Novgorod Oblast, Russia. The impact has been dated to the Sinemurian, around 192-196 Mya.
Pangaea at the start of Jurassic.
Paleogeography and tectonics

During the early Jurassic period, the supercontinent Pangaea broke up into the northern supercontinent Laurasia and the southern supercontinent Gondwana; the Gulf of Mexico opened in the new rift between North America and what is now Mexico's Yucatán Peninsula. The Jurassic North Atlantic Ocean was relatively narrow, while the South Atlantic did not open until the following Cretaceous period. The continents were surrounded by Panthalassa, with the Tethys Ocean between Gondwana and Asia. At the end of the Triassic, there was a marine transgression in Europe, flooding most parts of central and western Europe transforming it into an archipelago of islands surrounded by shallow seas.
The breakup of Gondwanaland took place during the Late Jurassic, the Indian Ocean opened up as a result.
The Boreal Ocean was connected to the western Tethys by the "Viking corridor", a several hundred kilometer wide passage between the Baltic Shield and Greenland. Madagascar and Antarctica began to rift away from Africa during Early Jurassic, beginning the fragmentation of Gondwana. At the beginning of the Jurassic, North and South America remained connected, but by the beginning of the Late Jurassic had rifted apart, forming the Caribbean Seaway, connecting the western Tethys with eastern Panthalassa. During the Early Jurassic, around 190 million years ago, the Pacific Plate originated at the triple junction of the Farallon, Phoenix, and Izanagi plates, the three main oceanic plates of Panthalassa. The previously stable triple junction had converted to an unstable arrangement surrounded on all sides by transform faults, due to a kink in one of the plate boundaries, resulting in the formation of the Pacific Plate at the centre of the junction, which began to expand. During the Middle to early Late Jurassic, the Sundance Seaway, a shallow epicontinental sea would cover much of northwest North America.

Climate

The climate of Jurassic was generally warmer than at present, by around 5 °C to 10 °C. Atmospheric carbon dioxide levels were likely four times higher than present. Forests likely grew near the poles, and experienced warm summers and cold, sometimes snowy winters, and there were unlikely to have been ice sheets given the high summer temperatures, though mountain glaciers may have existed. The ocean depths were likely 8 °C warmer than present, and reefs grew 10° of latitude further north and south. The Intertropical Convergence Zone likely existed over the oceans, resulting in large areas of desert in the lower latitudes.
Terrestrial environment of the Toarcian of Łęczna (Ciechocinek Formation, Lublin, Poland), based on the Bogdanka Coal Mine Flora. Dinosaurs are based on material found on various locations of the formation.
Flora

End-Triassic extinction

The preceding end-Triassic extinction would result in the decline of Peltaspermaceae seed ferns, with Lepidopteris persisting into the Early Jurassic in Patagonia. At the Triassic-Jurassic boundary in Greenland, the sporomorph diversity suggests a complete floral turnover. An analysis of macrofossil floral communities in Europe suggests no extinction over the Triassic-Jurassic boundary, and that changes were mainly due to local ecological succession. Dicroidium, a seed fern that was a dominant part of Gondwanan floral communities during the Triassic, would decline at the T-J, boundary, surviving as a relict in Antarctica into the Sinemurian.

Fauna

Aquatic and marine

During the Jurassic period, the primary vertebrates living in the sea were fish and marine reptiles. The latter include ichthyosaurs, which were at the peak of their diversity, plesiosaurs, including pliosaurs, and marine thalattosuchian crocodyliformes of the families Teleosauridae, Machimosauridae and Metriorhynchidae.

Calcareous sabellids (Glomerula) appeared in the Early Jurassic. The Jurassic also had diverse encrusting and boring (sclerobiont) communities, and it saw a significant rise in the bioerosion of carbonate shells and hardgrounds. Especially common is the ichnogenus (trace fossil) Gastrochaenolites. During the Jurassic period, about four or five of the twelve clades of planktonic organisms that exist in the fossil record either experienced a massive evolutionary radiation or appeared for the first time.
 
Kiddle: Jurassic
Wikipedia: Jurassic
 
 
 
 
Search Fun Easy English
 
 
 
 
About    Contact    Copyright    Resources    Site Map