Classroom Pronunciation Reductions Grammar Conversation Reading Listening Vocabulary Activities Videos
Idioms Slang Acronyms Phonics Portmanteau Words Handwriting Alphabet Surveys Tests
Holidays Movies Everyday Environment Learning News Places Flashcards Study Literacy
World America History Drive Education Teaching Dictionary Resources About Contact
 
 
 
Aerial photo of the San Andreas Fault in the Carrizo Plain, northwest of Los Angeles.
Earthquakes

An earthquake (or quakes, tremors) is shaking of the surface of earth, caused by sudden movement in the Earth's crust. They can be extremely violent.

Earthquakes are usually quite brief, but may repeat. They are the result of a sudden release of energy in the Earth's crust. This creates seismic waves, which are waves of energy that travel through the Earth. The study of earthquakes is called seismology. Seismology studies the frequency, type and size of earthquakes over a period of time.

There are large earthquakes and small earthquakes. Large earthquakes can take down buildings and cause death and injury. Earthquakes are measured using observations from seismometers. The magnitude of an earthquake, and the intensity of shaking, is usually reported on the Richter scale. On the scale, 3 or less is scarcely noticeable, and magnitude 7 (or more) causes damage over a wide area.

An earthquake under the ocean can cause a tsunami. This can cause just as much death and destruction as the earthquake itself. Landslides can happen, too. Earthquakes are part of the Earth's rock cycle.
History

The ancient Chinese used a device that looked like a jar with dragons on the top surrounded by frogs with their mouths open. When an earthquake occurred, a ball fitted into each dragon's mouth would drop out of the dragon's mouth into the frog's. The position of the frog which received a ball indicated the direction of the earthquake. This was one of the first tools to help figure out where an earthquake originated from.

Causes of an earthquake

Earthquakes are caused by tectonic movements in the Earth's crust. The main cause is that when tectonic plates collide, one rides over the other, causing orogeny (mountain building), earthquakes and volcanoes.

The boundaries between moving plates form the largest fault surfaces on Earth. When they stick, relative motion between the plates leads to increasing stress. This continues until the stress rises and breaks, suddenly allowing sliding over the locked portion of the fault, releasing the stored energy.

Earthquake fault types

There are three main types of geological fault that may cause an earthquake: normal, reverse (thrust) and strike-slip. Normal faults occur mainly in areas where the crust is being extended. Reverse faults occur in areas where the crust is being shortened. Strike-slip faults are steep structures where the two sides of the fault slip horizontally past each other.
Earthquake clusters

Most earthquakes form part of a sequence, related to each other in terms of location and time. Most earthquake clusters consist of small tremors which cause little to no damage, but there is a theory that earthquakes can recur in a regular pattern.

A foreshock is an earthquake that occurs before a larger earthquake, called the mainshock. A foreshock is in the same area of the main shock but always of a smaller magnitude.

An aftershock is an earthquake that occurs after a previous earthquake, the mainshock. An aftershock is in the same region of the main shock but always of a smaller magnitude. Aftershocks are formed as the crust adjusts to the effects of the main shock.

Earthquake swarms are sequences of earthquakes striking in a specific area within a short period of time. They are different from earthquakes followed by a series of aftershocks by the fact that no single earthquake in the sequence is obviously the main shock, therefore none have notably higher magnitudes than the other. An example of an earthquake swarm is the 2004 activity at Yellowstone National Park.

Sometimes a series of earthquakes occur in a sort of earthquake storm, where the earthquakes strike a fault in clusters, each triggered by the shaking or stress redistribution of the previous earthquakes. Similar to aftershocks but on adjacent segments of fault, these storms occur over the course of years, and with some of the later earthquakes as damaging as the early ones. Such a pattern occurred in the North Anatolian fault in Turkey in the 20th century.

Tsunami

Tsunami or a chain of fast moving waves in the ocean caused by powerful earthquakes is a very serious challenge for people's safety and for earthquake engineering. Those waves can inundate coastal areas, destroy houses and even swipe away whole towns.

Unfortunately, tsunamis can not be prevented. However, there are warning systems which may warn the population before the big waves reach the land to let them enough time to rush to safety.
Earthquake-proofing

Some places, such as Japan or California, have many earthquakes and many inhabitants. There, it is good practice to construct houses and other buildings which will resist collapse in an earthquake. This is called seismic design or "earthquake-proofing".

Earthquake-proof buildings are constructed to withstand the destructive force of an earthquake. This depends upon its type of construction, shape, mass distribution, and rigidity. Different combinations are used. Square, rectangular, and shell-shaped buildings can withstand earthquakes better than skyscrapers. To reduce stress, a building's ground floor can be supported by extremely rigid, hollow columns, while the rest of the building is supported by flexible columns inside the hollow columns. Another method is to use rollers or rubber pads to separate the base columns from the ground, allowing the columns to shake parallel to each other during an earthquake.

To help prevent a roof from collapsing, builders make the roof out of light-weight materials. Outdoor walls are made with stronger and more reinforced materials such as steel or reinforced concrete. During an earthquake flexible windows may help hold the windows together so they don’t break.

Kiddle: Earthquakes
Wikipedia: Earthquakes
 
A normal (dip-slip) fault is an inclined fracture where the rock mass above an inclined fault moves down.
The Science of Earthquakes

What is an earthquake?

An earthquake is what happens when two blocks of the earth suddenly slip past one another. The surface where they slip is called the fault or fault plane. The location below the earth’s surface where the earthquake starts is called the hypocenter, and the location directly above it on the surface of the earth is called the epicenter.

Sometimes an earthquake has foreshocks. These are smaller earthquakes that happen in the same place as the larger earthquake that follows. Scientists can’t tell that an earthquake is a foreshock until the larger earthquake happens. The largest, main earthquake is called the mainshock. Mainshocks always have aftershocks that follow. These are smaller earthquakes that occur afterwards in the same place as the mainshock. Depending on the size of the mainshock, aftershocks can continue for weeks, months, and even years after the mainshock!
A simplified cartoon of the crust (brown), mantle (orange), and core (liquid in light gray, solid in dark gray) of the earth.
What causes earthquakes and where do they happen?

The earth has four major layers: the inner core, outer core, mantle and crust. The crust and the top of the mantle make up a thin skin on the surface of our planet.

But this skin is not all in one piece – it is made up of many pieces like a puzzle covering the surface of the earth. Not only that, but these puzzle pieces keep slowly moving around, sliding past one another and bumping into each other. We call these puzzle pieces tectonic plates, and the edges of the plates are called the plate boundaries. The plate boundaries are made up of many faults, and most of the earthquakes around the world occur on these faults. Since the edges of the plates are rough, they get stuck while the rest of the plate keeps moving. Finally, when the plate has moved far enough, the edges unstick on one of the faults and there is an earthquake.
The tectonic plates divide the Earth's crust into distinct "plates" that are always slowly moving. Earthquakes are concentrated along these plate boundaries.
Why does the earth shake when there is an earthquake?

While the edges of faults are stuck together, and the rest of the block is moving, the energy that would normally cause the blocks to slide past one another is being stored up. When the force of the moving blocks finally overcomes the friction of the jagged edges of the fault and it unsticks, all that stored up energy is released. The energy radiates outward from the fault in all directions in the form of seismic waves like ripples on a pond. The seismic waves shake the earth as they move through it, and when the waves reach the earth’s surface, they shake the ground and anything on it, like our houses and us!
The cartoon sketch of the seismograph shows how the insrument shakes with the earth below it, but the recording device remains stationary (instead of the other way around).
How are earthquakes recorded?

Earthquakes are recorded by instruments called seismographs. The recording they make is called a seismogram. The seismograph has a base that sets firmly in the ground, and a heavy weight that hangs free. When an earthquake causes the ground to shake, the base of the seismograph shakes too, but the hanging weight does not. Instead the spring or string that it is hanging from absorbs all the movement. The difference in position between the shaking part of the seismograph and the motionless part is what is recorded.

How do scientists measure the size of earthquakes?

The size of an earthquake depends on the size of the fault and the amount of slip on the fault, but that’s not something scientists can simply measure with a measuring tape since faults are many kilometers deep beneath the earth’s surface. So how do they measure an earthquake? They use the seismogram recordings made on the seismographs at the surface of the earth to determine how large the earthquake was. A short wiggly line that doesn’t wiggle very much means a small earthquake, and a long wiggly line that wiggles a lot means a large earthquake. The length of the wiggle depends on the size of the fault, and the size of the wiggle depends on the amount of slip.

The size of the earthquake is called its magnitude. There is one magnitude for each earthquake. Scientists also talk about theintensity of shaking from an earthquake, and this varies depending on where you are during the earthquake.
An example of a seismic wave with the P wave and S wave labeled.
How can scientists tell where the earthquake happened?

Seismograms come in handy for locating earthquakes too, and being able to see the P wave and the S wave is important. You learned how P & S waves each shake the ground in different ways as they travel through it. P waves are also faster than S waves, and this fact is what allows us to tell where an earthquake was. To understand how this works, let’s compare P and S waves to lightning and thunder. Light travels faster than sound, so during a thunderstorm you will first see the lightning and then you will hear the thunder. If you are close to the lightning, the thunder will boom right after the lightning, but if you are far away from the lightning, you can count several seconds before you hear the thunder. The further you are from the storm, the longer it will take between the lightning and the thunder.
P Waves alternately compress and stretch the crustal material parallel to the direction they are propagating. S Waves cause the crustal material to move back and forth perpendicular to the direction they are travelling.
P waves are like the lightning, and S waves are like the thunder. The P waves travel faster and shake the ground where you are first. Then the S waves follow and shake the ground also. If you are close to the earthquake, the P and S wave will come one right after the other, but if you are far away, there will be more time between the two.

By looking at the amount of time between the P and S wave on a seismogram recorded on a seismograph, scientists can tell how far away the earthquake was from that location. However, they can’t tell in what direction from the seismograph the earthquake was, only how far away it was. If they draw a circle on a map around the station where the radius of the circle is the determined distance to the earthquake, they know the earthquake lies somewhere on the circle. But where?

Scientists then use a method called triangulation to determine exactly where the earthquake was (see image below). It is called triangulation because a triangle has three sides, and it takes three seismographs to locate an earthquake. If you draw a circle on a map around three different seismographs where the radius of each is the distance from that station to the earthquake, the intersection of those three circles is the epicenter!
Triangulation can be used to locate an earthquake. The seismometers are shown as green dots. The calculated distance from each seismometer to the earthquake is shown as a circle. The location where all the circles intersect is the location of the earthquake epicenter.
Can scientists predict earthquakes?

No, and it is unlikely they will ever be able to predict them. Scientists have tried many different ways of predicting earthquakes, but none have been successful. On any particular fault, scientists know there will be another earthquake sometime in the future, but they have no way of telling when it will happen.

Is there such a thing as earthquake weather? Can some animals or people tell when an earthquake is about to hit?

These are two questions that do not yet have definite answers. If weather does affect earthquake occurrence, or if some animals or people can tell when an earthquake is coming, we do not yet understand how it works.
USGS: The Science of Earthquakes
USGS: Latest Earthquakes
USGS: Cool Earthquake Facts
USGS: Earthquake Animations
USGS: Today in Earthquake History
USGS: Preface
USGS: Historical perspective
USGS: Developing the theory
USGS: Understanding plate motions
USGS: "Hotspots": Mantle thermal plumes
USGS: Some unanswered questions
USGS: Plate tectonics and people
USGS: Endnotes
 
 
 
 
Search Fun Easy English
 
 
 
 
About    Contact    Copyright    Resources    Site Map