Classroom Pronunciation Reductions Grammar Conversation Reading Listening Vocabulary Activities Videos
Idioms Slang Acronyms Phonics Portmanteau Words Handwriting Alphabet Surveys Tests
Holidays Movies Everyday Environment Learning News Places Flashcards Study Literacy
World America History Drive Education Teaching Dictionary Resources About Contact
 
 
 
A tornado approaching Elie, Manitoba.
Tornados

A tornado is a violently rotating column of air that is in contact with both the surface of the Earth and a cumulonimbus cloud or, in rare cases, the base of a cumulus cloud. The windstorm is often referred to as a twister, whirlwind or cyclone, although the word cyclone is used in meteorology to name a weather system with a low-pressure area in the center around which, from an observer looking down toward the surface of the earth, winds blow counterclockwise in the Northern Hemisphere and clockwise in the Southern. Tornadoes come in many shapes and sizes, and they are often visible in the form of a condensation funnel originating from the base of a cumulonimbus cloud, with a cloud of rotating debris and dust beneath it. Most tornadoes have wind speeds less than 110 miles per hour (180 km/h), are about 250 feet (80 m) across, and travel a few miles (several kilometers) before dissipating. The most extreme tornadoes can attain wind speeds of more than 300 miles per hour (480 km/h), are more than two miles (3 km) in diameter, and stay on the ground for dozens of miles (more than 100 km).

Various types of tornadoes include the multiple vortex tornado, landspout, and waterspout. Waterspouts are characterized by a spiraling funnel-shaped wind current, connecting to a large cumulus or cumulonimbus cloud. They are generally classified as non-supercellular tornadoes that develop over bodies of water, but there is disagreement over whether to classify them as true tornadoes. These spiraling columns of air frequently develop in tropical areas close to the equator and are less common at high latitudes. Other tornado-like phenomena that exist in nature include the gustnado, dust devil, fire whirl, and steam devil.

Tornadoes occur most frequently in North America (particularly in central and southeastern regions of the United States colloquially known as tornado alley), Southern Africa, northwestern and southeast Europe, western and southeastern Australia, New Zealand, Bangladesh and adjacent eastern India, and southeastern South America. Tornadoes can be detected before or as they occur through the use of Pulse-Doppler radar by recognizing patterns in velocity and reflectivity data, such as hook echoes or debris balls, as well as through the efforts of storm spotters.
A tornado near Anadarko, Oklahoma, 1999. The funnel is the thin tube reaching from the cloud to the ground. The lower part of this tornado is surrounded by a translucent dust cloud, kicked up by the tornado's strong winds at the surface. The wind of the tornado has a much wider radius than the funnel itself.
Characteristics

Size and shape

Most tornadoes take on the appearance of a narrow funnel, a few hundred yards (meters) across, with a small cloud of debris near the ground. Tornadoes may be obscured completely by rain or dust. These tornadoes are especially dangerous, as even experienced meteorologists might not see them. Tornadoes can appear in many shapes and sizes.

Appearance

Tornadoes can have a wide range of colors, depending on the environment in which they form. Those that form in dry environments can be nearly invisible, marked only by swirling debris at the base of the funnel. Condensation funnels that pick up little or no debris can be gray to white. While traveling over a body of water (as a waterspout), tornadoes can turn white or even blue. Slow-moving funnels, which ingest a considerable amount of debris and dirt, are usually darker, taking on the color of debris. Tornadoes in the Great Plains can turn red because of the reddish tint of the soil, and tornadoes in mountainous areas can travel over snow-covered ground, turning white.

Lighting conditions are a major factor in the appearance of a tornado. A tornado which is "back-lit" (viewed with the sun behind it) appears very dark. The same tornado, viewed with the sun at the observer's back, may appear gray or brilliant white. Tornadoes which occur near the time of sunset can be many different colors, appearing in hues of yellow, orange, and pink.

Dust kicked up by the winds of the parent thunderstorm, heavy rain and hail, and the darkness of night are all factors that can reduce the visibility of tornadoes. Tornadoes occurring in these conditions are especially dangerous, since only weather radar observations, or possibly the sound of an approaching tornado, serve as any warning to those in the storm's path. Most significant tornadoes form under the storm's updraft base, which is rain-free, making them visible. Also, most tornadoes occur in the late afternoon, when the bright sun can penetrate even the thickest clouds. Night-time tornadoes are often illuminated by frequent lightning.

Rotation

Tornadoes normally rotate cyclonically (when viewed from above, this is counterclockwise in the northern hemisphere and clockwise in the southern). While large-scale storms always rotate cyclonically due to the Coriolis effect, thunderstorms and tornadoes are so small that the direct influence of the Coriolis effect is unimportant, as indicated by their large Rossby numbers. Supercells and tornadoes rotate cyclonically in numerical simulations even when the Coriolis effect is neglected. Low-level mesocyclones and tornadoes owe their rotation to complex processes within the supercell and ambient environment.

Sound and seismology

Tornadoes emit widely on the acoustics spectrum and the sounds are caused by multiple mechanisms. Various sounds of tornadoes have been reported, mostly related to familiar sounds for the witness and generally some variation of a whooshing roar. Popularly reported sounds include a freight train, rushing rapids or waterfall, a nearby jet engine, or combinations of these. Many tornadoes are not audible from much distance; the nature of and the propagation distance of the audible sound depends on atmospheric conditions and topography.

Electromagnetic, lightning, and other effects

Tornadoes emit on the electromagnetic spectrum, with sferics and E-field effects detected. There are observed correlations between tornadoes and patterns of lightning. Tornadic storms do not contain more lightning than other storms and some tornadic cells never produce lightning at all. More often than not, overall cloud-to-ground (CG) lightning activity decreases as a tornado touches the surface and returns to the baseline level when the tornado dissipates. In many cases, intense tornadoes and thunderstorms exhibit an increased and anomalous dominance of positive polarity CG discharges. Electromagnetics and lightning have little or nothing to do directly with what drives tornadoes (tornadoes are basically a thermodynamic phenomenon), although there are likely connections with the storm and environment affecting both phenomena.
A sequence of images showing the birth of a tornado. First, the rotating cloud base lowers. This lowering becomes a funnel, which continues descending while winds build near the surface, kicking up dust and debris and causing damage. As the pressure continues to drop, the visible funnel extends to the ground. This tornado, near Dimmitt, Texas, was one of the best-observed violent tornadoes in history.
Life cycle

Supercell relationship

Tornadoes often develop from a class of thunderstorms known as supercells. Supercells contain mesocyclones, an area of organized rotation a few miles up in the atmosphere, usually 1–6 miles (1.6–9.7 kilometres) across. Most intense tornadoes (EF3 to EF5 on the Enhanced Fujita Scale) develop from supercells. In addition to tornadoes, very heavy rain, frequent lightning, strong wind gusts, and hail are common in such storms.

Most tornadoes from supercells follow a recognizable life cycle which begins when increasing rainfall drags with it an area of quickly descending air known as the rear flank downdraft (RFD). This downdraft accelerates as it approaches the ground, and drags the supercell's rotating mesocyclone towards the ground with it.

Formation

As the mesocyclone lowers below the cloud base, it begins to take in cool, moist air from the downdraft region of the storm. The convergence of warm air in the updraft and cool air causes a rotating wall cloud to form. The RFD also focuses the mesocyclone's base, causing it to draw air from a smaller and smaller area on the ground. As the updraft intensifies, it creates an area of low pressure at the surface. This pulls the focused mesocyclone down, in the form of a visible condensation funnel. As the funnel descends, the RFD also reaches the ground, fanning outward and creating a gust front that can cause severe damage a considerable distance from the tornado. Usually, the funnel cloud begins causing damage on the ground (becoming a tornado) within a few minutes of the RFD reaching the ground.

Maturity

Initially, the tornado has a good source of warm, moist air flowing inward to power it, and it grows until it reaches the "mature stage". This can last from a few minutes to more than an hour, and during that time a tornado often causes the most damage, and in rare cases can be more than one mile (1.6 km) across. The low pressured atmosphere at the base of the tornado is essential to the endurance of the system. Meanwhile, the RFD, now an area of cool surface winds, begins to wrap around the tornado, cutting off the inflow of warm air which previously fed the tornado.
Composite of eight images shot in sequence as a tornado formed in Kansas in 2016.
Dissipation

As the RFD completely wraps around and chokes off the tornado's air supply, the vortex begins to weaken, becoming thin and rope-like. This is the "dissipating stage", often lasting no more than a few minutes, after which the tornado ends. During this stage the shape of the tornado becomes highly influenced by the winds of the parent storm, and can be blown into fantastic patterns. Even though the tornado is dissipating, it is still capable of causing damage. The storm is contracting into a rope-like tube and, due to conservation of angular momentum, winds can increase at this point.

As the tornado enters the dissipating stage, its associated mesocyclone often weakens as well, as the rear flank downdraft cuts off the inflow powering it. Sometimes, in intense supercells, tornadoes can develop cyclically. As the first mesocyclone and associated tornado dissipate, the storm's inflow may be concentrated into a new area closer to the center of the storm and possibly feed a new mesocyclone. If a new mesocyclone develops, the cycle may start again, producing one or more new tornadoes. Occasionally, the old (occluded) mesocyclone and the new mesocyclone produce a tornado at the same time.

Although this is a widely accepted theory for how most tornadoes form, live, and die, it does not explain the formation of smaller tornadoes, such as landspouts, long-lived tornadoes, or tornadoes with multiple vortices. These each have different mechanisms which influence their development—however, most tornadoes follow a pattern similar to this one.
A dust devil in Arizona.
Types

Multiple vortex

A multiple-vortex tornado is a type of tornado in which two or more columns of spinning air rotate about their own axes and at the same time revolve around a common center. A multi-vortex structure can occur in almost any circulation, but is very often observed in intense tornadoes. These vortices often create small areas of heavier damage along the main tornado path. This is a phenomenon that is distinct from a satellite tornado, which is a smaller tornado which forms very near a large, strong tornado contained within the same mesocyclone. The satellite tornado may appear to "orbit" the larger tornado (hence the name), giving the appearance of one, large multi-vortex tornado. However, a satellite tornado is a distinct circulation, and is much smaller than the main funnel.

Waterspout

A waterspout is defined by the National Weather Service as a tornado over water. However, researchers typically distinguish "fair weather" waterspouts from tornadic (i.e. associated with a mesocyclone) waterspouts. Fair weather waterspouts are less severe but far more common, and are similar to dust devils and landspouts. They form at the bases of cumulus congestus clouds over tropical and subtropical waters. They have relatively weak winds, smooth laminar walls, and typically travel very slowly. They occur most commonly in the Florida Keys and in the northern Adriatic Sea. In contrast, tornadic waterspouts are stronger tornadoes over water. They form over water similarly to mesocyclonic tornadoes, or are stronger tornadoes which cross over water. Since they form from severe thunderstorms and can be far more intense, faster, and longer-lived than fair weather waterspouts, they are more dangerous. In official tornado statistics, waterspouts are generally not counted unless they affect land, though some European weather agencies count waterspouts and tornadoes together.

Landspout

A landspout, or dust-tube tornado, is a tornado not associated with a mesocyclone. The name stems from their characterization as a "fair weather waterspout on land". Waterspouts and landspouts share many defining characteristics, including relative weakness, short lifespan, and a small, smooth condensation funnel which often does not reach the surface. Landspouts also create a distinctively laminar cloud of dust when they make contact with the ground, due to their differing mechanics from true mesoform tornadoes. Though usually weaker than classic tornadoes, they can produce strong winds which could cause serious damage.

Similar circulations

Gustnado

A gustnado, or gust front tornado, is a small, vertical swirl associated with a gust front or downburst. Because they are not connected with a cloud base, there is some debate as to whether or not gustnadoes are tornadoes. They are formed when fast moving cold, dry outflow air from a thunderstorm is blown through a mass of stationary, warm, moist air near the outflow boundary, resulting in a "rolling" effect (often exemplified through a roll cloud). If low level wind shear is strong enough, the rotation can be turned vertically or diagonally and make contact with the ground. The result is a gustnado. They usually cause small areas of heavier rotational wind damage among areas of straight-line wind damage.

Dust devil

A dust devil (also known as a whirlwind) resembles a tornado in that it is a vertical swirling column of air. However, they form under clear skies and are no stronger than the weakest tornadoes. They form when a strong convective updraft is formed near the ground on a hot day. If there is enough low level wind shear, the column of hot, rising air can develop a small cyclonic motion that can be seen near the ground. They are not considered tornadoes because they form during fair weather and are not associated with any clouds. However, they can, on occasion, result in major damage.

Fire whirls

Small-scale, tornado-like circulations can occur near any intense surface heat source. Those that occur near intense wildfires are called fire whirls. They are not considered tornadoes, except in the rare case where they connect to a pyrocumulus or other cumuliform cloud above. Fire whirls usually are not as strong as tornadoes associated with thunderstorms. They can, however, produce significant damage.

Steam devils

A steam devil is a rotating updraft between 50 and 200 meters wide that involves steam or smoke. These formations do not involve high wind speeds, only completing a few rotations per minute. Steam devils are very rare. They most often form from smoke issuing from a power plant's smokestack. Hot springs and deserts may also be suitable locations for a tighter, faster-rotating steam devil to form. The phenomenon can occur over water, when cold arctic air passes over relatively warm water.
A house displaying EF1 damage. The roof and garage door have been damaged, but walls and supporting structures are still intact.
Intensity and damage

The Fujita scale and the Enhanced Fujita Scale rate tornadoes by damage caused. The Enhanced Fujita (EF) Scale was an update to the older Fujita scale, by expert elicitation, using engineered wind estimates and better damage descriptions. The EF Scale was designed so that a tornado rated on the Fujita scale would receive the same numerical rating, and was implemented starting in the United States in 2007. An EF0 tornado will probably damage trees but not substantial structures, whereas an EF5 tornado can rip buildings off their foundations leaving them bare and even deform large skyscrapers. The similar TORRO scale ranges from a T0 for extremely weak tornadoes to T11 for the most powerful known tornadoes. Doppler weather radar data, photogrammetry, and ground swirl patterns (cycloidal marks) may also be analyzed to determine intensity and award a rating.

Tornadoes vary in intensity regardless of shape, size, and location, though strong tornadoes are typically larger than weak tornadoes. The association with track length and duration also varies, although longer track tornadoes tend to be stronger. In the case of violent tornadoes, only a small portion of the path is of violent intensity, most of the higher intensity from subvortices.

In the United States, 80% of tornadoes are EF0 and EF1 (T0 through T3) tornadoes. The rate of occurrence drops off quickly with increasing strength—less than 1% are violent tornadoes (EF4, T8 or stronger). Outside Tornado Alley, and North America in general, violent tornadoes are extremely rare. This is apparently mostly due to the lesser number of tornadoes overall, as research shows that tornado intensity distributions are fairly similar worldwide. A few significant tornadoes occur annually in Europe, Asia, southern Africa, and southeastern South America.
Intense tornado activity in the United States. The darker-colored areas denote the area commonly referred to as Tornado Alley.
Climatology

The United States has the most tornadoes of any country, nearly four times more than estimated in all of Europe, excluding waterspouts. This is mostly due to the unique geography of the continent. North America is a large continent that extends from the tropics north into arctic areas, and has no major east–west mountain range to block air flow between these two areas. In the middle latitudes, where most tornadoes of the world occur, the Rocky Mountains block moisture and buckle the atmospheric flow, forcing drier air at mid-levels of the troposphere due to downsloped winds, and causing the formation of a low pressure area downwind to the east of the mountains. Increased westerly flow off the Rockies force the formation of a dry line when the flow aloft is strong, while the Gulf of Mexico fuels abundant low-level moisture in the southerly flow to its east. This unique topography allows for frequent collisions of warm and cold air, the conditions that breed strong, long-lived storms throughout the year. A large portion of these tornadoes form in an area of the central United States known as Tornado Alley. This area extends into Canada, particularly Ontario and the Prairie Provinces, although southeast Quebec, the interior of British Columbia, and western New Brunswick are also tornado-prone. Tornadoes also occur across northeastern Mexico.

The United States averages about 1,200 tornadoes per year, followed by Canada, averaging 62 reported per year. NOAA's has a higher average 100 per year in Canada. The Netherlands has the highest average number of recorded tornadoes per area of any country (more than 20, or 0.0013 per sq mi (0.00048 per km2), annually), followed by the UK (around 33, or 0.00035 per sq mi (0.00013 per km2), per year), although those are of lower intensity, briefer and cause minor damage.

Tornadoes kill an average of 179 people per year in Bangladesh, the most in the world. Reasons for this include the region's high population density, poor construction quality, and lack of tornado safety knowledge. Other areas of the world that have frequent tornadoes include South Africa, the La Plata Basin area, portions of Europe, Australia and New Zealand, and far eastern Asia.

Tornadoes are most common in spring and least common in winter, but tornadoes can occur any time of year that favorable conditions occur. Spring and fall experience peaks of activity as those are the seasons when stronger winds, wind shear, and atmospheric instability are present. Tornadoes are focused in the right front quadrant of landfalling tropical cyclones, which tend to occur in the late summer and autumn. Tornadoes can also be spawned as a result of eyewall mesovortices, which persist until landfall.

Tornado occurrence is highly dependent on the time of day, because of solar heating. Worldwide, most tornadoes occur in the late afternoon, between 3 pm and 7 pm local time, with a peak near 5 pm. Destructive tornadoes can occur at any time of day. The Gainesville Tornado of 1936, one of the deadliest tornadoes in history, occurred at 8:30 am local time.

The United Kingdom has the highest incidence of tornadoes per unit area of land in the world. Unsettled conditions and weather fronts transverse the British Isles at all times of the years, and are responsible for spawning the tornadoes, which consequently form at all times of the year. The United Kingdom has at least 34 tornadoes per year and possibly as many as 50. Most tornadoes in the United Kingdom are weak, but they are occasionally destructive. For example, the Birmingham tornado of 2005 and the London tornado of 2006 both registered F2 on the Fujita scale and both caused significant damage and injury.

Detection

Rigorous attempts to warn of tornadoes began in the United States in the mid-20th century. Before the 1950s, the only method of detecting a tornado was by someone seeing it on the ground. Often, news of a tornado would reach a local weather office after the storm. However, with the advent of weather radar, areas near a local office could get advance warning of severe weather. The first public tornado warnings were issued in 1950 and the first tornado watches and convective outlooks came about in 1952. In 1953, it was confirmed that hook echoes were associated with tornadoes. By recognizing these radar signatures, meteorologists could detect thunderstorms probably producing tornadoes from several miles away.
A map of the tornado paths in the Super Outbreak (April 3–4, 1974).
Extremes

The tornado which holds most records in history was the Tri-State Tornado, which roared through parts of Missouri, Illinois, and Indiana on March 18, 1925. It was likely an F5, though tornadoes were not ranked on any scale in that era. It holds records for longest path length (219 miles; 352 km), longest duration (about 3.5 hours), and fastest forward speed for a significant tornado (73 mph; 117 km/h) anywhere on Earth. In addition, it is the deadliest single tornado in United States history (695 dead). The tornado was also the costliest tornado in history at the time (unadjusted for inflation), but in the years since has been surpassed by several others if population changes over time are not considered. When costs are normalized for wealth and inflation, it ranks third today.

The deadliest tornado in world history was the Daultipur-Salturia Tornado in Bangladesh on April 26, 1989, which killed approximately 1,300 people. Bangladesh has had at least 19 tornadoes in its history that killed more than 100 people, almost half of the total in the rest of the world.

The most extensive tornado outbreak on record was the 2011 Super Outbreak, which spawned 360 confirmed tornadoes over the southeastern United States, 216 of them within a single 24-hour period. The previous record was the 1974 Super Outbreak which spawned 148 tornadoes.

While direct measurement of the most violent tornado wind speeds is nearly impossible, since conventional anemometers would be destroyed by the intense winds and flying debris, some tornadoes have been scanned by mobile Doppler radar units, which can provide a good estimate of the tornado's winds. The highest wind speed ever measured in a tornado, which is also the highest wind speed ever recorded on the planet, is 301 ± 20 mph (484 ± 32 km/h) in the F5 Bridge Creek-Moore, Oklahoma, tornado which killed 36 people. The reading was taken about 100 feet (30 m) above the ground.

Storms that produce tornadoes can feature intense updrafts, sometimes exceeding 150 mph (240 km/h). Debris from a tornado can be lofted into the parent storm and carried a very long distance. A tornado which affected Great Bend, Kansas, in November 1915, was an extreme case, where a "rain of debris" occurred 80 miles (130 km) from the town, a sack of flour was found 110 miles (180 km) away, and a cancelled check from the Great Bend bank was found in a field outside of Palmyra, Nebraska, 305 miles (491 km) to the northeast. Waterspouts and tornadoes have been advanced as an explanation for instances of raining fish and other animals.
Damage from the Birmingham tornado of 2005. An unusually strong example of a tornado event in the United Kingdom, the Birmingham Tornado resulted in 19 injuries, mostly from falling trees.
Safety

Though tornadoes can strike in an instant, there are precautions and preventative measures that can be taken to increase the chances of survival. Authorities such as the Storm Prediction Center advise having a pre-determined plan should a tornado warning be issued. When a warning is issued, going to a basement or an interior first-floor room of a sturdy building greatly increases chances of survival. In tornado-prone areas, many buildings have underground storm cellars, which have saved thousands of lives.

Some countries have meteorological agencies which distribute tornado forecasts and increase levels of alert of a possible tornado (such as tornado watches and warnings in the United States and Canada). Weather radios provide an alarm when a severe weather advisory is issued for the local area, mainly available only in the United States. Unless the tornado is far away and highly visible, meteorologists advise that drivers park their vehicles far to the side of the road (so as not to block emergency traffic), and find a sturdy shelter. If no sturdy shelter is nearby, getting low in a ditch is the next best option. Highway overpasses are one of the worst places to take shelter during tornadoes, as the constricted space can be subject to increased wind speed and funneling of debris underneath the overpass.
The 1999 Salt Lake City tornado disproved several misconceptions, including the idea that tornadoes cannot occur in cities.
Myths and misconceptions

Folklore often identifies a green sky with tornadoes, and though the phenomenon may be associated with severe weather, there is no evidence linking it specifically with tornadoes. It is often thought that opening windows will lessen the damage caused by the tornado. While there is a large drop in atmospheric pressure inside a strong tornado, it is unlikely that the pressure drop would be enough to cause the house to explode. Opening windows may actually increase the severity of the tornado's damage. A violent tornado can destroy a house whether its windows are open or closed.

Another commonly held misconception is that highway overpasses provide adequate shelter from tornadoes. This belief is partly inspired by widely circulated video captured during the 1991 tornado outbreak near Andover, Kansas, where a news crew and several other people take shelter under an overpass on the Kansas Turnpike and safely ride out a tornado as it passes by. However, a highway overpass is a dangerous place during a tornado, and the subjects of the video remained safe due to an unlikely combination of events: the storm in question was a weak tornado, the tornado did not directly strike the overpass, and the overpass itself was of a unique design. Due to the Venturi effect, tornadic winds are accelerated in the confined space of an overpass. Indeed, in the 1999 Oklahoma tornado outbreak of May 3, 1999, three highway overpasses were directly struck by tornadoes, and at each of the three locations there was a fatality, along with many life-threatening injuries. By comparison, during the same tornado outbreak, more than 2,000 homes were completely destroyed and another 7,000 damaged, and yet only a few dozen people died in their homes.

An old belief is that the southwest corner of a basement provides the most protection during a tornado. The safest place is the side or corner of an underground room opposite the tornado's direction of approach (usually the northeast corner), or the central-most room on the lowest floor. Taking shelter in a basement, under a staircase, or under a sturdy piece of furniture such as a workbench further increases chances of survival.

There are areas which people believe to be protected from tornadoes, whether by being in a city, near a major river, hill, or mountain, or even protected by supernatural forces. Tornadoes have been known to cross major rivers, climb mountains, affect valleys, and have damaged several city centers. As a general rule, no area is safe from tornadoes, though some areas are more susceptible than others.
A Doppler on Wheels unit observing a tornado near Attica, Kansas.
Ongoing research

Meteorology is a relatively young science and the study of tornadoes is newer still. Although researched for about 140 years and intensively for around 60 years, there are still aspects of tornadoes which remain a mystery. Scientists have a fairly good understanding of the development of thunderstorms and mesocyclones, and the meteorological conditions conducive to their formation. However, the step from supercell, or other respective formative processes, to tornadogenesis and the prediction of tornadic vs. non-tornadic mesocyclones is not yet well known and is the focus of much research.
Kiddle: Tornados
Wikipedia: Tornados
 
 
 
 
Search Fun Easy English
 
 
 
 
About    Contact    Copyright    Resources    Site Map